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Chapter 1: Subtract infinity from infinity 
Please subtract infinity from infinity. What do you get? The most 
straightforward, instinctive answer would be zero. However, it 
could be 𝜋. It could also be -1. In fact, with some clever exploits 
of infinite sums of sequences, you can get any anything you want. 

 
Introduction: the “paradox” 
Bernhard Riemann (1826-1866) is responsible for numerous 
headaches in the world of mathematics. One of the most being the 
Riemann Hypothesis. When he was alive, he thought the 
hypothesis could be easily proven, and so he put it aside and left 
it unsolved for 150 years until now. 
 
We would introduce one of the most easily understandable 
theorems by Riemann. This theorem is called Riemann 
Rearrangement Theorem. It states that if an infinite series of real 
numbers is conditionally convergent, then we could manipulate it 
to whatever we want. 
 
But you would ask: what on earth is “conditionally convergent”? 
In simple terms, the sum of the series exists but if you take the 
absolute value of every term, it does not.  
Let me show you an example:  
 

𝐴 = 1 +
1
2 −

1
2 +

1
3 −

1
3 +

1
4 −

1
4 … 
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The series A clearly adds to 1. However, if we take out all the 
positive terms, or the negative terms, the resultant sequence goes 
to infinity. 
1 + 1

2
+ 1

3
+ 1

4
… =  ∞                                  − 1

2
− 1

3
− 1

4
… =  −∞  

 
Now if we add both sequences, it would be ∞ − ∞. I will show 
you in a moment how the sum could be any number. This seems 
paradoxical doesn’t it? 
 
Adding and subtracting in a controlled manner 
𝜋 is arguably one of the most important mathematical constant 
right? Let’s try and get 𝜋 first.  
First, we will start at 1. 𝜋 is clearly larger than our 1. So, we will 
take the left sum, and add some of the terms to it. 

1 +
1
2 = 1.5 

This is still less than 𝜋. Let’s add some more. 
1 +

1
2 +

1
3 = 1.8333 … 

Still less than our favorite dessert constant. But no worries. We 
know that the sum goes to infinity, so we would eventually get 
there right? 
Sadly, this would take a while. 

1 +
1
2 + ⋯ +

1
13 = 3.1801 … 

Finally, we got something larger than 𝜋. Let’s add the negative 
terms from the right-hand side now. 

1 +
1
2 + ⋯ +

1
13 −

1
2 = 2.6801 … 
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Smaller than 𝜋. Let’s add the positive terms again. 
1 +

1
2 + ⋯ +

1
13 −

1
2 +

1
14 + ⋯ +

1
21 = 3.1453 … = 𝑆 

We are officially two decimal places accurate now. I hope you 
see where this is going, but let’s just do it one more time. Also, I 
will call the above sum 𝑆, just for simplicity. 

𝑆 −
1
3 = 2.8120 … 

Smaller than 𝜋. Fantastic. Let’s add some more positive terms. 

𝑆 −
1
3 +

1
22 + ⋯ +

1
30 = 3.16 … 

Note that every term of our sum still comes from A. After 
infinitely many times of manipulation like this, we could get to 
exactly 𝜋. In fact, we could get any constants we want. Isn’t that 
amazing? 
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Chapter 2: Are there infinitely many primes 
Short answer: yes. A mathematician, however, won’t believe 
it until it is proven true. As complicated as this problem might 
seem, it was already solved two thousand years ago by Euclid. 

 
Introduction: The Elements by Euclid 
Euclid was a great mathematician and philosopher back in his era, 
that we know surprisingly little about, but whose work had an 
indescribable impact on mathematics, even until today. For 
almost 2000 years, this book would stand as the pinnacle of 
logical rigor and human achievements, standing as the second-
most republished book after the Bible. It is arguably the root of 
all modern mathematics. Geometry, algebra and even prototypes 
of calculus are found in this book.  
However, what makes this book truly amazing is that it only 
included 5 postulates, based on common sense or proven theories. 
Then, everything else in the book was based on these postulates, 
demonstrating how far we could achieve by these simple rules. 
They are listed on the next page. 
 
I would add a quick note here, that the 5th postulate was neither 
proven nor disproven. In fact, later mathematicians, like Gauss 
and Bolyai would have discovered an entirely new branch of 
geometry called “non-Euclidian geometry”, where the 5th 
postulate does not hold.  
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1. A straight line segment can be drawn joining any two points. 
 
2. Any straight line segment can be extended indefinitely in a 
straight line. 
 
3. Given any straight line segment, a circle can be drawn having 
the segment as radius and one endpoint as center. 
 
4. All right angles are congruent. 
 
5.  If two lines intersects a third line in a way that the sum of the 
interior angles does not equal to 180 degrees, then, extended 
enough, it must meet at some point. (Postulate of parallel lines) 
 
I hope you can see why the 5th postulate is so troublesome. It 
“assumed” that geometry all take place on a perfectly flat surface, 
in which the postulate would hold. However, on a curved surface, 
the postulate would not hold in every case. So, mathematician 
called this idealized geometry the “Euclidian geometry” and those 
where the postulate does not hold the “non-Euclidian geometry”. 
 
Let’s go back to prime numbers. The proof is proposition 20 in 
The Elements, in which Euclid set up a proof by contradiction by 
first assuming otherwise, then showing which would lead to an 
obviously wrong statement, thus showing that the assumption 
itself is wrong and finally proving the statement. 
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Proof by contradiction 
First, we will assume that there are only finitely many prime 
numbers. Let’s say that there are precisely 𝑛 prime numbers. We 
will label all the prime numbers as 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛. 
 
We will now do the following: 

𝑝1 × 𝑝2 × 𝑝3 × … × 𝑝𝑛 = 𝑠𝑜𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
 
Clearly this “some number” is the product of all primes, and it 
should contain all primes as a factor. 
 
Now let’s add 1 to the number. 
 
Since the smallest prime number is 2, we know that “Some 
number + 1”, when dividing to any prime number, would have a 
remainder 1. Since every composite number could be written as a 
product of some prime numbers (i.e. has a unique prime 
factorization), then it should not divide any composite numbers 
as well. “Some number + 1” should be prime. 
 
But we assumed that there are only 𝑝1, 𝑝2, 𝑝3 … 𝑝𝑛 that are prime 
numbers. Clearly “Some number + 1” is bigger than all of those 
and would not equal to any of them. 
 
We arrived a contradiction. So, we can conclude that the 
assumption is wrong and there are infinitely many primes. 

 
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Chapter 3: Why does 𝒆𝒊𝝅 + 𝟏 = 𝟎 ? 
 

𝑒𝑖𝜋 + 1 = 0  is perhaps the most well-known equation in the 
world of mathematics. The sense of elegance comes to you when 
you could see 5 of the most important mathematical constants 
could come together into a simple equation like this.  

 

Introduction: the historical sketch 
Four and a half centuries have passed since the first discoveries 
of complex numbers. As you might have already known, the term 
“complex number” refers to some entity of the form 𝑎 + 𝑏𝑖 , 
where a and b are ordinary real numbers. 𝑖, on the other hand, is 
unlike any other real number and has the property of 𝑖2 = −1. 
Also, don’t be scared by the term “complex number”. 
Mathematicians are just bad at naming things. 

The number 𝑖 is first introduced in 1702 by Leibniz. It was not 
well received at that time, in fact being described as “the 
amphibian between existence and not”. Even in 1770 the situation 
was still confusing enough for famous mathematician as Euler to 
argue that √−2√−3 = √6 

I assume that you are all familiar with the number line. In late 18th 
century, famous mathematician Gauss found where the number 𝑖 
should lie on the number line, or at least in part. He argued that 
we should think of the number line as a number “plane” instead. 
The number 𝑖, and every other multiple of 𝑖, would lie on the new 
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axis we have created. This way, every complex number would be 
represented by points on the new “complex plane” we have 
created.  

Connection between complex plane and the formula 
First, I must tell you that in fact Euler discovered a more general 
form of the identity: 

𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖 𝑠𝑖𝑛𝑥 

 

Before we look at how complex numbers and our ingenious 
formula would correlate, we should perhaps first look at the what 
every part of the formula meant. 
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𝑒: It is defined as (1 + 1
𝑛

)𝑛 as n approaches infinity. The most 
important property is that the function 𝑦 = 𝑒𝑥  shares the same 
value with its area between the curve and the x-axis at any given 
x value. It has the value of around 2.718. 

 

𝑖: It has the property of 𝑖2 = −1  

 

𝜋: the ratio between the diameter of a circle and its circumference. 
It has the value of around 3.142. In fact, 𝜋 is proven to be neither 
possible to be written as a ratio between two rational numbers, 
nor is it a solution to any polynomial with rational coefficients. 
We will discuss this in chapter 6. 

Now let’s set up a unit circle around 0 on the complex plane. We 
will choose a point on the unit circle. 
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It is obvious now – 𝑐𝑜𝑠(𝑥) is the real part of the number and 
𝑠𝑖𝑛(𝑥)  is the imaginary part of the function. Scale it by the 
magnitude 𝑟 (the distance between the origin and the point) of the 
number, then you can get any complex number.  

Since cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥) = 𝑒𝑖𝑥  we can multiply by 𝑟  on both 
sides. This means we can represent any complex number in the 
form of 𝑟𝑒𝑖𝑥! Isn’t that amazing? 

 

Proof of the identity 
Now let’s proof the identity: 

Let 𝑓(𝑥) = 𝑐𝑜𝑠𝑥+𝑖 𝑠𝑖𝑛𝑥
𝑒𝑖𝑥  

Then by quotient rule, 

 𝑓′(𝑥) =  −𝑒𝑖𝑥 sin(𝑥) + 𝑖𝑒𝑖𝑥 cos(𝑥) − 𝑖𝑒𝑖𝑥 cos(𝑥) + 𝑒𝑖𝑥 sin(𝑥) 
(𝑒𝑖𝑥)2   

We can see that all the terms cancel out. So, the numerator would 
be 0, which means 𝑓′(𝑥) = 0 

Now,  

∫ 𝑓′(𝑥) 𝑑𝑥 = 𝑓(𝑥) = 𝐶 

Let 𝑥 = 0 

𝑓(0) =
𝑐𝑜𝑠𝑥 + 𝑖 𝑠𝑖𝑛𝑥

𝑒𝑖𝑥 = 1 = 𝐶 

𝑓(𝑥) = 𝑐𝑜𝑠𝑥+𝑖 𝑠𝑖𝑛𝑥
𝑒𝑖𝑥 = 1 implies that cos(𝑥) + 𝑖 sin(𝑥) = 𝑒𝑖𝑥      



15 
 

Chapter 4: The sum of all inverse squares 
 

Let me tell you that 

1
12 +

1
22 +

1
32 + ⋯ = ∑

1
𝑛2

∞

𝑛=0

=  
𝜋2

6  

“Wait… I think you made a mistake. 𝜋 is supposed to be the ratio 
of diameters and circumferences. How does it show up here? How 
is it squared? There was no circle…” You made a totally valid 
point. In fact, there is a circle hiding somewhere in this formula. 
But let us look at the background info before we get started. 

 

History of the notorious problem 
This problem is also known as the Basel problem. Proposed in 
1644 by Mengoli, it was solved in 1735 by Euler. Originally, this 
problem brought so much headache to even the top 
mathematicians back in the days. So, when Euler solved the 
problem, it brought him immediate fame. 

Later the Riemann Hypothesis was announced, which is not 
solved until now. In fact, anyone who can prove that there are 
infinitely many non-trivial roots can earn $1 million (in US 
dollars) reward. The Riemann Hypothesis introduces the zeta 
function 𝜁(𝑧) =  1

1𝑧 + 1
2𝑧 + 1

3𝑧 + ⋯ . Although Riemann was more 
intrigued by the complex inputs of the function, 𝜁(2) turns out to 
be the same sum the Basel Problem introduced. Furthermore, it 
led to a generalization of values of 𝜁(2), 𝜁(4) etc.  
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Proof of the problem 
By the Parseval’s identity:  

∫ |𝑓(𝑥)|2𝑑𝑥
𝜋

−𝜋
= 2𝜋 ∑ |𝑐𝑛|2

∞

𝑛= −∞

 

Where  

𝑐𝑛 =
1

2𝜋 ∫ 𝑓(𝑥)𝑒−𝑖𝑛𝑥𝑑𝑥
𝜋

−𝜋
 

Now, put in 𝑓(𝑥) = 𝑥, we get 

∑ |𝑐𝑛|2
∞

𝑛= −∞

=
1

2𝜋 ∫ 𝑥2𝑑𝑥
𝜋

−𝜋
 

Where 

𝑐𝑛 = 𝑛𝜋 cos(𝑛𝜋)−sin (𝑛𝜋)
𝑛2𝜋

 = cos(𝑛𝜋)
𝑛

𝑖 = (−1)𝑛

𝑛
𝑖 

for 𝑛 ≠ 0 and 𝑐0 = 0. We can conclude that 

|𝑐𝑛|2 = {

1
𝑛2  𝑓𝑜𝑟 𝑛 ≠ 0

0 𝑓𝑜𝑟 𝑛 = 0

 

And, 

∑ |𝑐𝑛|2
∞

𝑛= −∞

= ∑
1

𝑛2

−1

𝑛= −∞

+ ∑
1

𝑛2

∞

𝑛= 1

+ |𝑐0|2 

Since 1
𝑛2 is an even function, we can conclude that, 

∑
1

𝑛2

∞

𝑛= 1

=
1

4𝜋 ∫ 𝑥2𝑑𝑥
𝜋

−𝜋
=  

𝜋2

6  

 

 



17 
 

Then… where is the circle? 
First, I must confess that the proof I provided above was not from 
Euler. In fact, Euler used Taylor expansions of  sin (𝑥)  and 
compare it for coefficients for every degree. But please do look at 
the hidden circle in this proof. Originally, 𝑓(𝑥) can only be used 
for periodic functions of 2𝜋. We can, however, force the function 
to go around the unit circle, as it has a circumference of 2𝜋. Now 
take a look at 𝑐𝑛 again. The 𝑒−𝑖𝑛𝑥 part, if you could relate that to 
Euler’s identity mentioned in Chapter 3, does exactly it. 

The method used above is called Fourier Transformation. Applied 
in many different aspects such as sound wave editing, it is a more 
advanced topic of Complex Analysis, whereas Euler’s identity, 
cos(𝑥) + 𝑖 sin(𝑥) = 𝑒𝑖𝑥, is arguably the most important building 
block of Complex Analysis.  

 

  

 

 

 

 

 

 

 
The basic idea of Fourier Transform 
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Chapter 5: Trigonometric Functions in the 
complex world 
First, let’s refresh our memory on the definition of trigonometric 
functions. The following would be the Taylor expansion of 𝑠𝑖𝑛 
and 𝑐𝑜𝑠, and we will define the rest of the functions in terms of 
𝑠𝑖𝑛 and 𝑐𝑜𝑠. 

sin(𝑧) = ∑
(−1)𝑛𝑧2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

 

 

cos(𝑧) = ∑
(−1)𝑛𝑧2𝑛

(2𝑛)!

∞

𝑛=0

 

tan(𝑧) =  sin (𝑧)
cos (𝑧)

 sec(𝑧) =  1
cos (𝑧)

 

csc(𝑧) =  1
sin (𝑧)

 cot(𝑧) =  1
tan (𝑧)

 

Now, by changing the terms of the Euler’s identity mentioned in 
Chapter 1, which states that cos(𝑥) + 𝑖 sin(𝑥) = 𝑒𝑖𝑥, we can see 
that: 

sin(𝑧) =
𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖
 

cos(𝑧) =
𝑒𝑖𝑧 + 𝑒−𝑖𝑧

2  

This introduces us the hyperbolic trigonometric functions, which 
their relationship is stated by the following identities: 

sin(𝑧) = −𝑖𝑠𝑖𝑛ℎ(𝑖𝑧) 
cos(𝑧) = 𝑐𝑜𝑠ℎ(𝑖𝑧) 
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Trigonometry beyond the boundaries. 
You might ask: How is this useful? Normally we would think of 
the sine function bounded by 1 and -1. Every input would lie in 
between. However, with our newfound knowledge, we could 
make up solutions such that sin(𝑥) equals to any number! 
 
Let’s say we will solve for sin(𝑥) = 3. 
 
First, the identity tells us that: 
 

𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 = 3 

We can see that: 
𝑒𝑖𝑧 − 𝑒−𝑖𝑧 = 6𝑖 

We will multiply 𝑒𝑖𝑧 on both sides and rearrange the term: 
𝑒2𝑖𝑧 − 6𝑖𝑒𝑖𝑧 − 1 = 0 

Apply the quadratic formula: 
𝑒𝑖𝑧 = 3 + √10 𝑜𝑟 3 − √10 

Take the natural log on both sides and divide the answer by 𝑖. 
Note that −𝑖 = 1

𝑖
 

𝑧 = − log(3 ± √10) 𝑖 
If you were aware of the whole process, you might notice that I 
am attempting to take the natural log of a negative number. This 
shall be left as an exercise for the reader. (Hint: Since 𝑒𝑖𝜋 = −1 
we can say log(−1) = 𝑖𝜋.) 
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Chapter 6: Transcendental numbers and π  
 

Before we transcend into knowing the transcendence of numbers, 
let us look at the irrationality of a number first. A number is 
rational if it could be written as a fraction, with both its numerator 
and denominator an integer. Otherwise, it would be an irrational 
number. 3 is a rational number as well as 0.8391. They could be 
written as 3

1
 and 8391

10000
. Meanwhile, √2  or log (3)  would be an 

irrational number. We will set up a proof by contradiction, which 
we mentioned in Chapter 4, on the irrationality of log (3) later. 
Now, let’s transcend in to one higher level of the hierarchy of 
numbers. 
 
Established without an example 
We define algebraic numbers as numbers that could be solutions 
to polynomials with integer exponents and rational coefficients. 
For instance: 𝑓(𝑥) = 𝑥2 + 3 or 𝑓(𝑥) = 6𝑥3742 + 216𝑥57 − 59. 

Both would be valid polynomials. The solutions of 𝑓(𝑥) = 0 to 
these would all be algebraic numbers. Transcendental numbers 
are essentially non-algebraic numbers. They could not exist as 
solutions to any polynomials that satisfies the requirements. 

In 1768, Lambert proved 𝜋 is irrational, and conjectured that it 
would be transcendental. However, during the time when 
Lambert published his paper, transcendental numbers were not 
even known that if they exist or not. This was until 1844, when 
Liouville proved the existence of transcendental numbers. 
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Ironically, he could not give any example of transcendental 
numbers until 1851, when he invented his own constant: 

0.11000100000000000000000100 … 

It contains 1 only at 1! = 1, 2! = 2, 3! = 6… and other digits would 
be zero. In 1873, Hermite proved that 𝑒 is transcendental, and 
shortly after, Lindenmann proved that transcendence of 𝜋 based 
largely on Hermite’s work.  

Since Lindenmann’s proof needed to first prove that 𝑒 and any of 
its rational powers is transcendental, I would instead provide a 
simple proof of my own. We will not get into very technical stuff 
of the proof right here, but I would provide an outline of what the 
proof looks like. It won’t be very strict and rigorous. 

 

Proof with the Basel Problem 
We will assume 𝜋 is a solution to some polynomial. 

Since we could convert our Basel Problem infinite sum thing (see 
chapter 2) into a continued fraction: 

1
22

1 − 1
22 −

22 − 1
32

1 + 22 − 1
32 −

32 − 1
52

1 + 32 − 1
52 −

52 − 1
72

…

 

Due to the distribution of primes is generally decreasing (*), 
𝑝𝑛

2−1
𝑝𝑛+12  will decrease as n increases. This means the partial sums of 
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our continued fraction will tend to 1. However, the continued 

fraction 1 + 1
1+ 1

1+⋯
 equals to √5+1

2
 (It’s the golden ratio), which is 

obviously algebraic. We can see that if our sequence of partial 
quotient (the 1+something term in every layer of the continued 
fraction) would be strictly 1, then at somewhere at the k-th layer 
of the infinite fraction we could write the k+1-th terms onwards 
as some algebraic number. Then, our result would be algebraic. 

 

However, since 𝑝𝑛
2−1

𝑝𝑛+12  only gets arbitrarily close to 0 as n 

increases, and algebraic numbers are countably infinite, they are 
only countable points of number on the number line. This implies 
that we could only get arbitrarily close to some algebraic number, 
which implies 𝜋2

6
 is not algebraic, but real, i.e. transcendental. 

 

And since 𝑥
2

6
 is a polynomial, for any algebraic input 𝑥 it would 

have an algebraic output. This contradicts our result thus 𝜋 itself 
must also be transcendental. 

 

 

 

 

 

(*) – Actually, there is a theorem called PNT, which states that the distribution of 
primes around 𝑥 tends to 𝑥

ln 𝑥
.  
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Chapter 7: Let’s hack integration by doing 
differentiation 
This one is a lot of fun, so let’s jump straight in. The following is 
commonly called the Feynman technique, and normally people 
would think that the famous physicist Richard Feynman derived 
it.  

This technique works on some definite integrals which 
antiderivative could not be expressed as an elementary function. 
We would introduce one more variable, usually denoted 𝑏, then 
we would differentiate it with respect to 𝑏, then do the integration 
part with respect to 𝑥, finally integrating the resultant function 
with respect to 𝑏 and use some basic algebra to find the value of 
C we added after the indefinite integral. 

Suppose we would like to integrate the following: 

∫
sin (𝑥)

𝑥

∞

0
𝑑𝑥 

Please do pause and ponder here: any ordinary tricks won’t work. 
Now we will introduce our term “𝑏” in the exponential function. 
We want this because we know that when we differentiate the 
function with respect to 𝑏, 𝑥 will be a constant and by the chain 
rule we can cancel out the x. 

𝐼(𝑏) = ∫
sin (𝑥)

𝑥

∞

0
𝑒−𝑏𝑥𝑑𝑥 
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The reason we introduce a negative sign in 𝑒−𝑏𝑥 is that we want 
it to be convergent, which you would see why in a moment. Now, 
we would differentiate it: 

𝐼′(𝑏) = ∫
𝜕

𝜕𝑏 (
sin(𝑥)

𝑥

∞

0
𝑒−𝑏𝑥)𝑑𝑥 = − ∫ sin (𝑥)

∞

0
𝑒−𝑏𝑥𝑑𝑥 

Now we can integrate the expression with respect to 𝑥. This is a 
standard integration by part and we shall leave it to the reader as 
an exercise. We will show the answer now: 

𝐼′(𝑏) = −
1

𝑏2 + 1
[−𝑒−𝑏𝑥(cos(𝑥) + 𝑏𝑠𝑖𝑛(𝑥)]

∞
0 = −

1
𝑏2 + 1 

Now you see why we put the negative sign on the exponential. If 
we didn’t do so, the 𝑒𝑏𝑥 term would explode to infinity, which we 
don’t want.  

Now we integrate with respect to 𝑏, and we know it is the inverse 
tangent function arctan (𝑏), 

𝐼(𝑏) = ∫
sin (𝑥)

𝑥

∞

0
𝑒−𝑏𝑥𝑑𝑥 = −arctan(𝑏) + 𝐶 

Put in 𝑏 → ∞ we get C = 𝜋
2
  

Now, we put in 𝑏 = 0 and we get the following: 

∫
sin (𝑥)

𝑥

∞

0
𝑑𝑥 =

𝜋
2 

Isn’t that wonderful? 



25 
 

Chapter 8: Factorials and the Gaussian 
integral 
I am sure that if you made your way until here, you would most 
likely be familiar with what the factorial is. Denoted with the ! 
sign, it is the product of all integers below some number. Let’s 
take 4 as an example: 4! = 4 × 3 × 2 × 1. 

Now we will take a look at a topic that is seemingly unrelated: 
Integrals. Consider the following: 

∫ 𝑒−𝑥2𝑑𝑥
∞

−∞
 

Seems easy? Try it and see what answer you would get. In fact, 
this thing equals √𝜋. And, in the next pages, I will show you the 
elegant correlation between the factorials and this integral. 

Introduction: the surprisingly wide applications 
Let’s talk about the factorials first. Normally, factorials show up 
in these two places: Probability and Taylor Expansions. In 
probability, factorials serve as a shorthand to write long 
expressions as a shorter one. It is used mostly to compute 
combinations and permutations. Meanwhile, Taylor expansions 
made the factorials with the power rule in differentiation. Of 
which the term 𝑛 appears every time you differentiate a 𝑥𝑛 term. 
Then if the curve is differentiated to 0, then you get a factor of n!. 

𝑓(𝑥) = 𝑓(0) +
1
1! 𝑓′(0)𝑥 +

1
2! 𝑓′′(0)𝑥 +

1
3! 𝑓′′′(0)𝑥. .. 
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On the other hand, the Gaussian integral is mostly useful in 
statistics and data analysis. Moivre discovered that integrals that 
would share some properties with the Gaussian integral would 
exist, while Gauss published this precise integral in 1809. When 
integrated, it could not be expressed by any elementary function 
(standard notation). Instead, mathematicians called the result the 
“Error Function”, notated as erf (𝑥).  

Well now we have a definition: 

√𝜋 erf(𝑥) = ∫ 𝑒−𝑥2𝑑𝑥
𝑥

−𝑥
 

Here are some special values for erf (𝑥) 

When 𝑥 = 0, erf(𝑥) = 0 

When 𝑥 → ∞, erf(𝑥) = 1 

When 𝑥 → −∞, erf(𝑥) = −1 

This integral also relates to the cumulative distribution function 
of the normal distribution, which is arguably the most often case 
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in any statistical results. This is also used in quantum mechanics 
to find probability density of ground state harmonic oscillators.  

Their connection: the gamma function 
Since 𝑒−𝑥2  is an even function, we can rewrite the Gaussian 
integral as the following: 

∫ 𝑒−𝑥2𝑑𝑥
∞

−∞
= 2 ∫ 𝑒−𝑥2𝑑𝑥

∞

0
 

Then we will do the substitution 𝑢 = 𝑥2 and rearrange the terms: 

∫ 𝑢−1
2𝑒−𝑢𝑑𝑢

∞

0
 

Let’s take a look at the definition of Gamma function: 

Γ(z) = ∫ 𝑢−𝑧𝑒−𝑢𝑑𝑢
∞

0
 

By comparison we can see that the Gaussian integral is Γ (1
2
). 

Now, we will prove the relationship between gamma and 
factorials, in which we use a technique called induction. We first 
prove that for the smallest case that the statement holds true, then 
we prove that if the statement on some integer k holds true, then 
k+1 is also true. So if we know that if 1 is true, then 2 is true. If 2 
is true, then 3 is true… so on and forth. But since we “proved” 
that 1 is true, we know that every integer is true. 
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Claim: Γ(n) = (n − 1)! 

 

Γ(1) = 1 = (1 − 1)! 

We can see case 1 is true. 

 

Now suppose case k is true, where k is a positive integer: 

Γ(k + 1) = ∫ 𝑢−𝑘−1𝑒−𝑢𝑑𝑢
∞

0
 

Using integration by parts we get: 

Γ(k + 1) = k ∫ 𝑢−𝑘𝑒−𝑢𝑑𝑢
∞

0
= 𝑘 Γ(k) 

 

Since we assumed case k is true, then we can do a substitution 
using our claim: 

Γ(k + 1) = 𝑘 (k − 1)! = k! 

 

We can see that case k+1 is true when case k is true. 

By the principle of induction, our claim is true for any positive 
integer n. 
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