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Curious Facts.
by Isaac Li

K 8 J

π, along with e (Euler’s number) are two of the most well-known
irrational and transcendental numbers!

Irrational numbers are those that cannot be written as the quotient
of two integers. This means that there are no integers a, b such that

π =
a

b
.

Transcendental numbers are those that cannot be expressed as a
root of any (nonzero) polynomial with rational coefficients. Note
that a number can be irrational but not transcendental; consider
the number

√
2. It is obviously irrational, but it’s also a root to the

polynomial
x2 − 2 = 0.

Thus
√

2 is not transcendental.

=

At the time of writing it is not known whether

ππ
ππ

is an integer. The reason is that the constant is so big that even
modern computers can’t compute its value. Even if we could, it’d
still be hard to prove its irrationality or transcendence.

There is also another class of troubling numbers, namely most sums,
products, powers, etc. of π and e, such as:

π + e, π − e, π · e, ππ, eπ

These are not known to be rational, algebraic, irrational or tran-
scendental, which really shows that we are still in the stone age of
mathematics.
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There are many infinite sums and products that can be used to
compute the value of π. Of the most famous we have

π2

6
=

1

12
+

1

22
+

1

32
+ . . .

π

2
=

(
2

1
· 2

3

)
·
(

4

3
· 4

5

)
·
(

6

5
· 6

7

)
· . . .

π =
4

1
− 4

3
+

4

5
− 4

7
+

4

9
− 4

11
+

4

13
− . . .

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· . . . (4)

These formulae demonstrate the unexpected and beautiful connec-
tions between different areas of mathematics. As such we have made
a separate entry explaining (4).

=

Many online sources claim that it is possible to find any sequence of
digits in the expansion of π — indeed we can find for example (in
base 27):

“PIE” at position 21913

“SJC” at position 28010

“MATH” at position 911592

“JOSEPH” at position 117295852

However, this does not prove anything, unless we can check the
infinitely many combinations of letters (which we obviously can’t).
It may come as a bit of a surprise that mathematicians have yet to
prove that π is normal — i.e. all possible strings of any finite length
can and will occur randomly (this is crudely oversimplified). However
it is widely believed to be true, we just do not have a proof yet.

For more fun with the digits of π, check out the next entry.
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(The reader is kindly asked to take this purely in a humorous vein.)
According to the Bible, π = 3 — and I cite Kings 7:23 :

23 ¶ And he made a molten sea, ten cubits from the one brim
to the other: it was round all about, and his height was five cubits:
and a line of thirty cubits did compass it round about.

Clearly, 30/10 = 3 = π! Of course, this doesn’t take into account
the physical thickness of objects, which is probably why the value
obtained here differs from the actual value of 3.1415 . . .

=

Non π-related

There are different orders of infinities! Cantor proved that the
cardinality of the set of real numbers R is uncountably infinite. This
differs from, and is strictly greater than, the cardinalities of sets such
as the natural numbers N, integers Z and rational numbers Q, all of
which are countably infinite.

=

Thanks to the Gödel’s Incompleteness Theorems, any axiomatic
system (A formal axiomatic system is a set of axioms, i.e. absolute
assumed truths, from which all theorems are to be derived from.) that
is capable of modelling arithmetic cannot prove its own consistency!
Of course, you can carry out one in a stronger system, however the
consistency of said system itself would be another problem, and so on
ad infinitum. Thus we can never truly know whether the foundations
of mathematics is consistent.

=

A statement P is either true or false . . . or is it? In classical logic
this is known as the law of the excluded middle. However, certain
statements have been found to be independent (from a set of axioms)

— that means they can neither be proven nor disproved. Perhaps
the most (in)famous example is CH (Continuum Hypothesis), which
Cohen proved to be independent from the standard set theoretic
axiom system ZFC using a technique called forcing.
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Iterating the Digits of π.
by Raphael Li

K 8 J

It is well known that the digits of π starts with

3.1415926 . . .

and goes on and on forever. Each digit, ignoring the ones that come
before the decimal point, can be labelled with an index like so:

Index 1 2 3 4 5 6 7 . . .
Digit 1 4 1 5 9 2 6 . . .

We can then define a function f(s) as follows:

• The input s must be a string of digits1;

• If s appears in the first one million digits2 of π, f(s) is defined
as the index of its first occurrence, converted to a string;

• If s does not appear in the first one million digits of π, f(s) = s.

For instance, f(59) = 4 because the string of digits 59 first appears
at index 4. On the other hand, we let f(123456) = 123456 as the
string 123456 doesn’t appear3 in the first one million digits of π. Feel
free to play around with this function at http://pi.fathom.info.

Now that we have a function, what happens when we iterate it?
In general, iterating a function f(x) involves the following steps:

1This implies that leading zeroes must not be ignored. For example,
f(00123) 6= f(123).

2Here, one million is completely arbitrary.
3For the curious, the said string doesn’t appear until the 2458885th position.

http://pi.fathom.info
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1. Choose an initial value a0.

2. Compute a1 = f(a0).

3. Compute a2 = f(a1).

And so on.

To illustrate, here’s what happens when we let a0 = 03142021 and
a0 = 211 respectively:

f(03142021) = 589213 f(211) = 93

f(589213) = 663943 f(93) = 14

f(663943) = 781568 f(14) = 1

f(781568) = 182162 f(1) = 1

f(182162) = 182162

As we can see, the sequence on the left4 reaches a loop5 after 5
iterations. We say that the string 03142021 has a persistence of 5.
We will denote this as P (03142021) = 5. Similarly, P (211) = 4. It
is worth noting that the sequence on the right loops not because 1

doesn’t appear in the first one million digits of π, but because of
the coincidence that 1 first appears at index 1. These are called
self-locating strings6.

The fact that different starting values have different persistence
raises the question: Which string has the greatest persistence? Using
code (included at the end of this article), I have checked through
every string that represents a positive integer less than one million7

in about half an hour.

4It just so happens that the date of this year’s Pi Day (03142021) appears in
the first one million digits of π, which is rare. The next time this happens will
be over a century later – Pi Day 2177 (03142177). Isn’t this worth a celebration?

5Loops may not necessarily be of length 1. For example, sa → sb → sc → sa
also counts as a loop.

6Known self-locating strings in π are listed in sequence A057680 in the
OEIS. Learn more about them in this Numberphile video: https://youtu.be/

W20aT14t8Pw
7In other words, the program looks through strings 1 through 999999 and

finds the string with maximum persistence. Note that strings with leading zeroes,
such as 000314, are not checked. If you’re into Python, you can try editing the
code at the end of this article to include those strings as well.

K K<:MAC8
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But before we reveal the string with the greatest persistence, let’s
take a look at a few interesting facts I found out during the testing
of the program.

P (77) = 7 P (1357) = 9

P (1818) = 18 P (23456) = 7

In addition to the above, there are various solutions to the equation
P (s) = s, including, but not limited to, 00003, 08, 13, 0022 and 23.

But still, one question remains unanswered: which string has the
maximum persistence? Here comes the leaderboard:

Place String Persistence
1 329347 61
2 238480 60
3 158839 59

61 iterations. That’s a lot. If you have the time, try finding one
with even more iterations. As with other similar pieces of math, the
question most people ask is: How is this useful? To which I say,
it’s recreational mathematics – it’s meant to be useless. But useless
math is the best and the most beautiful kind of math, isn’t it?

But I digress. As an exercise to the reader, take a look at the
following piece of data collected whilst running the code – what
happens when we iterate P (s)?
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The code described in this article is included below. A text file
(named pi.txt) containing 1 million digits of π must be included8

in the project folder in order for it to work.

1 from time import time

2

3 piString = open("pi.txt", "r").read()[2:]

4

5

6 def get_index(string):

7 global piString

8 return piString.index(string)+1

9

10

11 def seq_length(n, printing=False):

12 seq = [str(n)]

13

14 if printing:

15 print("\n"+str(seq[0]))

16

17 while True:

18 try:

19 seq.append(str(get_index(seq[-1])))

20 if printing:

21 print(seq[-1])

22 if seq.count(seq[-1]) > 1:

23 if printing:

24 print("Loop!")

25 break

26 except ValueError:

27 if printing:

28 print("End of sequence")

29 break

30

31 return len(seq)

32

33

34 if __name__ == ’__main__’:

35 record = 0

36 low = int(input("Enter lower bound of search range (inclusive): "))

37 high = int(input("Enter upper bound of search range (exclusive): "))

38

39 start_time = time()

40 minutes_passed = 0

41

42 for curr in range(low, high):

43 length = seq_length(curr)

44 if length >= record:

45 print(f"New record: a0 = {curr} --> loops after {length} iterations")

46 record = length

47 if (time() - start_time)/60 > minutes_passed + 1:

48 minutes_passed += 1

49 print(f"{minutes_passed} minutes passed; Progress: {round(100*(curr - low)/(

high - low))}%")

50 print("\nDone")

8Such a file can be downloaded at http://pi2e.ch/blog/wp-content/

uploads/2017/03/pi_dec_1m.txt.

K K<:MAC8
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Viète’s Formula.
by Isaac Li and Raphael Li

K 8 J

Note: Below is an informal explanation of Viète’s Formula and is by no means

a rigorous proof; for readers that seek one, textbooks are a much better source.

Leonhard Euler was perhaps one of the most influential math-
ematicians. Amongst his many discoveries and developments,

Euler is credited for popularizing the Greek letter π to denominate
the Archimedes’ constant, the pi we all know and love today; as such,
we shall look at one of his derivations for an infinite series involving
π, Viète’s Formula9.

Viète’s formula is as follows:

2

π
=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· . . .

(This is, in fact, the first ever infinite product in the history of
mathematics.)
In this entry we present two proofs: a geometric argument; and an
algebraic derivation by Euler.

The Geometric View

This argument will be separated into two parts:

1. Proving a variation of the formula geometrically; and

2. Showing its equivalence to the original.

9Some readers may know of another (perhaps more conventional in the context
of introducing Euler’s many wonderful discoveries) infinite series, namely Euler’s
solution to the Basel Problem. However, I choose not to introduce it here for
two reasons: First, I wanted to keep this article as short as possible, and that
means favouring topics less demanding on prerequisites while still providing an
adequate explanation; The second is that there are already ample resources on the
Internet for the Basel Problem, so I shall leave it to the reader (One I particularly
recommend is 3B1B’s YouTube video, https://youtu.be/d-o3eB9sfls).

https://youtu.be/d-o3eB9sfls
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Proving a Variation of the Formula

In this section we will show that

lim
n→∞

2n ·

√√√√
2−

√
2 +

√
2 +

√
2 + · · ·

√
2︸ ︷︷ ︸

n square roots

= π. (∗)

To do so, imagine a regular polygon with 2n+1 sides10 being in-
scribed in a unit circle11. As n grows larger and larger, the perimeter
of the polygon will get closer and closer to the circumference of the
circle. To calculate the perimeter of the polygon, we can simply
multiply its side length by the number of sides – the latter is just
2n+1, but the former is a little bit more difficult to figure out.

4 sides 8 sides 16 sides · · ·

Figure 1: The number of sides of the polygon doubles every iteration.

Let us start with the first iteration, where a square is inscribed
in a circle (see left figure). If we focus on the upper-right quadrant
of the circle (see right figure), we can see that, since the radius is 1,
by the Pythagorean theorem, the side length of the square s1 is

√
2.

1

1 √
2

10The reason why I’ve written this as 2n+1 instead of just 2n is that in the
n-th iteration, the regular polygon will have a total of 2n+1 sides, not 2n.

11A circle with radius 1.

K K<:MAC8
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In the second iteration, we will be dealing with a regular octagon
instead of a square.

1

1 √
2

A

O

B

C 1

1

A

O

B

C

P

√
2

2

√
2
2

√
2

2

To find its side length s2, we will connect OB, which intersects
AC at P (coloured in blue). It follows that:

AP = PC =⇒ PC =
s1
2

=

√
2

2

=⇒ OP =
√
OC2 − PC2 =

√
2

2
(Pyth. thm.)

=⇒ PB = 1−OP = 1−
√

2

2

=⇒ BC =
√
PC2 + PB2 =

√
2−
√

2 (Pyth. thm.)

=⇒ s2 =

√
2−
√

2

It can be seen from the first line that finding the value of s2
requires finding that of s1 first. In fact, if we let sn denote the side
length of the polygon in the n-th iteration, we can express the value
of sn as a recursive formula:

sn =

√√√√(1−
√

12 −
(sn−1

2

)2)2

+
(sn−1

2

)2
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where the blue part and the red part are analogous to the lengths of
OP and PC respectively. Simplifying the expression gives:

sn =

√
2−

√
4− s2n−1 .

which produces the following values:

s1 =
√

2

s2 =

√
2−
√

2

s3 =

√
2−

√
2 +
√

2

s4 =

√
2−

√
2 +

√
2 +
√

2

...

sn =

√√√√
2−

√
2 +

√
2 +

√
2 + · · ·

√
2︸ ︷︷ ︸

n square roots

Therefore,

π =
Circumference

2 (Radius)
=

Circumference

2
(by definition)

= lim
n→∞

sn · 2n+1

2

= lim
n→∞

sn · 2n

= lim
n→∞

2n ·

√√√√
2−

√
2 +

√
2 +

√
2 + · · ·

√
2︸ ︷︷ ︸

n square roots

.
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Showing the Variation’s Equivalence to the Original

In this part we will show that equation (∗) is actually equivalent to
Viète’s formula. Consider the following equation:(

a1
a2

)(
a2
a3

)(
a3
a4

)
· · ·
(
an−1
an

)
=
a1
an

(1)

This technique of cancelling out terms is called telescoping12. Build-

ing upon this, let us start our (somewhat non-rigorous) proof.

Proof. Let P (n) denote the perimeter of a regular 2n+1-gon in-
scribed within a unit circle. In other words, P (n) = sn · 2n+1.
We know that

lim
n→∞

P (n) = Circumference = 2π, (2)

as illustrated by figure 1. Thus, we have

2

π
=

4

2π

= lim
n→∞

4

P (n)
(by (2))

= lim
n→∞

(
4

P (1)

)(
P (1)

P (2)

)(
P (2)

P (3)

)
· · ·
(
P (n− 1)

P (n)

)
(by (1))

=
4

4
√

2
· 4

√
2

8
√

2−
√

2
· 8

√
2−
√

2

16

√
2−

√
2 +
√

2

. . .

=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· . . .

�

12This technique is named telescoping (formally known as the method of
differences) because the terms in the sum or product collapse (cancel out) like a
telescope does, leaving the first and last terms behind. Such a sum or product is
called a telescoping series.
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An Algebraic Derivation

To start off, we have to introduce a concept called “mathematical
induction” — the idea’s very simple really: We have a statement
Q(n) on the natural numbers (namely 0, 1, 2, 3, · · ·), and we wish
to prove it for all natural numbers.
Such a proof is (typically) split into two steps:

1. The base case — we prove the statement for 1. Simple enough;

2. The inductive step — we show that Q(n) implies Q(n+ 1).

It is helpful to think of it as the sequential effect of falling dominoes:
Push the first one (Q(0)), and the rest (Q(1), Q(2), Q(3), · · ·) all
come falling down.

Trigonometric Trickery13

We begin with the double-angle formula:

sinx = 2 sin
x

2
cos

x

2
.

What happens when we iterate it?

sinx = 2 sin
x

2
cos

x

2

= 22 sin
x

22
cos

x

22
cos

x

2
,

and once more:

= 23 sin
x

23
cos

x

23
cos

x

22
cos

x

2
.

At this point we may notice a pattern: at the n-th iteration the
formula will be:

2n sin
x

2n

n times︷ ︸︸ ︷
cos

x

2n
cos

x

2n−1
· · · cos

x

22
cos

x

21

= 2n sin
x

2n

n∏
k=1

cos
x

2k
.
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Notice the subtle use of induction in the argument above — at
the (n+ 1)-th iteration we make use of the step before and apply the
formula again to derive following stages. The inductive step above
may be formalized as follows:

2n sin
x

2n

n∏
k=1

cos
x

2k

= 2n · 2 sin
x/(2n)

2
cos

x/(2n)

2

n∏
k=1

cos
x

2k

= 2n+1 sin
x

2n · 2
cos

x

2n · 2

n∏
k=1

cos
x

2k

= 2n+1 sin
x

2n+1

n+1∏
k=1

cos
x

2k �

And that was why I felt the need to introduce induction at the start
of this section (particularly in an algebraic derivation).

Now, what happens when we take the limit as n goes to infinity?
Intuitively, this just means taking the value of an expression as n
gets larger and larger. Let’s look at

lim
n→∞

2n sin
x

2n
= lim
n→∞

sin(x/2n)

2−n
.

The red parts get infinitely small as n approaches infinity. This is
actually a variant of another famous limit limn→0(sinx)/x, which
evaluates to x. Unfortunately due to the scarcity of space you will
have to take my word for this one, but they return the same result.
Below I plot a graph of limn→∞(sin(x/2n))/(2−n) with x = 6:

−5 5 10 15 20
−6

6

0

13If you’re unfamiliar with trigonometry or limits, but are happy with an
argument as it stands, independently of the reference, then feel free to move on.
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Indeed, the right hand side approaches exactly 6 (I hope you are
convinced now). Using this limit, we may write

sinx = lim
n→∞

2n sin
x

2n

n∏
k=1

cos
x

2k

= x · lim
n→∞

n∏
k=1

cos
x

2k

= x

∞∏
k=1

cos
x

2k

= x · cos
x

2
cos

x

22
cos

x

23
· · · .

Dividing both sides by x:

sinx

x
= cos

x

2
cos

x

22
cos

x

23
· · · . (∗)

Now, recall the cosine half-angle formula:

cos
x

2
=

√
1 + cosx

2
.

Take x = π/2; then

cos
π

4
=

√
1 + cos(π/2)

2
=

√
1

2
=

√
2

2
,

cos
π

8
=

√
1 + cos(π/4)

2
=

√
1 +
√

2/2

2

=

√
2 +
√

2

4
=

√
2 +
√

2

2
,

...

cos
π

2n
=

√
1 + cos(π/2n−1)

2
=

(n−1) square roots︷ ︸︸ ︷√
2 +

√
2 +

√
· · ·
√

2 +
√

2

2
.

The reader can quickly verify the general form by induction.
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For the final step, we substitute the above into (∗), which becomes

sin(π/2)

π/2
=

2

π

= cos
π/2

2
cos

π/2

22
cos

π/2

23
· · ·

= cos
π

22
cos

π

23
cos

π

24
· · ·

=

√
2

2
·
√

2 +
√

2

2
·

√
2 +

√
2 +
√

2

2
· . . .

And we are done.

Happy πDay!
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