


Foreword

It is a tradition of the Society to publish an expository jour-
nal dedicated to the communication of interesting mathe-
matics annually. This year, we have assembled contribu-
tions from four executive commitee members, as well as our
former president Toby Lam. We hope the articles contained
herein will educate as well as entertain you, regardless of
your background in mathematics.

Isaac Li
President of the Mathematics Society
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The 5 Platonic Solids
by Marco Chiu

What are the Platonic Solids?
Tetrahedron

Cube

Octahedron

Dodecahedron

Icosahedron

Platonic solids are polyhedra whose faces, edges, and
vertices are all the same as each other.

This means that every face must be a regular polygon,
having the same number of sides as every other face, and
at every vertex, the same number of edges and faces meet.
For example, in the dodecahedron, all the faces are regular
pentagons. At all the vertices, 3 pentagons and 3 edgesmeet.

Since there is only one type of face on a Platonic solid
(same for the edges and vertices), they are very symmetric.
Some of them are even used as dice.

Proof That There are Only 5 Platonic Solids

We attempt to 昀椀nd some properties a Platonic solid must
have, and thus prove that only 5 Platonic solids exist.

By de昀椀nition, for every Platonic solid:

1. Every face has the same number, B, of sides.

2. Every vertex touches the same number, =, of edges.
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Let �, �, and + be, respectively, the number of faces on the
Platonic solid, the number of edges it has, and the number
of vertices it has. By Euler’s polyhedral formula , we get � − Not to be confused

with Euler’s theo-
rem, nor the Local
Euler characteristic
formula

� ++ = 2 for any convex polyhedron.
Notice that if you try to count the number of edges of the

polyhedron using B · �, each edge is counted exactly twice,
since every edge is an edge of two faces, so the sum of (the
number of edges on each face) is 2E. Therefore, B� = 2�.
Similarly, every edge touches two vertices, so the sum of the
number of edges touching each vertex is 2�. So we have
=+ = 2�. Using these, we can rewrite Euler’s formula in
terms of �, B and E:

� − � ++ = 2
2�
B

− � + 2�
=

= 2

2
B
+ 2

=
= 1+ 2

�

Since we know � > 0, the RHS is greater than 1, we can
rearrange to get 1/B + 1/= > 1/2.

Notice that if B > 6, then = < 3, which is absurd. So,
Platonic solids can’t be made of hexagons. Also note that
B > 3. Since the B and = are interchangeable, we also have
3 6 = 6 5.

What is left now is to check all the possible combinations
of B and =. Indeed, we 昀椀nd that the pairs that satisfy the
relation above are as follows:

(B, =) = (3, 3) Tetrahedron, (4, 3) Cube,
(3, 4) Octahedron, (5, 3) Dodecahedron,
(3, 5) Icosahedron

These 5 pairs correspond exactly to the 5 Platonic solids.
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Why is This Proof Important?

This line of reasoning can be extended to other types of graphs.
For example, this method of proof can be used to prove that
on a toroidal graph which is made up of only pentagons,
hexagons and heptagons, and whose vertices touch exactly
3 edges, there must be the same number of pentagons as
heptagons. For more, see http://origametry.net/combgeom/to
ri/torusnotes.html.

Mathematics and the Arts
by Anthony Lai

Mathematics and arts are widely regarded as two opposite
subjects, with the former focusing on logical reasoning and
critical thinking, and the latter putting an emphasis on the
expression of emotions, idea or a world view. As di昀昀erent
as these two areas of study seem, the aesthetic beauty of arts
has a close relationship with mathematics.

The golden ratio is a beautiful constant in mathematics
de昀椀ned as 1+√5

2 . ¹ It can be derived from the Fibonacci se-
1 Dunlap, Richard A.
The golden ratio and
Fibonacci numbers.
World Scienti昀椀c,
1997.

quence. The sequence starts with 1 and 1, and each pro-
ceeding term is obtained by summing up the previous two
terms. The ratio between two successive termswill converge
to the golden ratio. ² The golden ratio is often associated 2 Schneider, Robert,

Fibonacci Numbers
and the Golden Ratio,
ArXiv.org, 2016

with the golden spiral, which is constructed using squares
with the lengths of Fibonacci numbers that are connected
together in a spiral. A quarter circle is then drawn in each
square to form this golden spiral. An example of an artwork
which utilises the beauty of this ratio, is The Great Wave o昀昀
Hanagawa by Katsushika Hokusai, who is famous for his ge-
ometrically precise works, as the ocean waves in the paint-
ing form a spiral roughly composed of quarter circles of dif-
ferent sizes, similar to the golden spiral. ³

3 Powera, Seamus
A., and Anthony G.
Shannonb. Natural
Mathematics, the
Fibonacci Numbers
and Aesthetics in Art.
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The usage of di昀昀erent sizes of wave spirals allows for
the golden ratio to manifest itself throughout the painting
between di昀昀erent sizes of quarter circles and improves the
overall aesthetic of the painting. The golden ratio is widely
used in the artworldwith examples of its applications found
in Dali’s Sacrament of the Last Supper, and also in Modulor,
designed by architect Le Corbusier. ⁴4 Livio, Mario. The

golden ratio and aes-
thetics. Plus Mag-

azine 22 (2002).

The golden ratio can also be found in many portraits be-
cause of its correlation to natural beauty and its ubiquity
in nature, for instance, snail shells and nautilus shells fol-
low the golden spiral, as well as the shape of the ear of a
human body. ⁵ In the famous portrait, the Mona Lisa by Da

5 Persaud, Dharam,
and James P.

O’Leary. Fibonacci
series, golden pro-

portions, and the hu-
man biology. (2015).

Vinci, the golden spiral can be found on the left side of the
woman’s face, and simultaneously, the anticlockwise spiral
beautifully frames her face. The spiral winds from her nose,
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wraps around her chin, and with one standard line, con-
nects her elbow to her thumb. ⁶ The golden ratio creates an 6 Foundation, Mona

Lisa, Leonardo
and Mathematics,
The Mona Lisa
Foundation, 2018

aesthetically pleasing appearance due to its prominence in
nature, and its role in establishing natural beauty.

The golden ratio is an invaluable asset to art and beauty,
but almost an oddity to the art world as it is mainly con-
structed by taking the ratio of two integers, or solving a sim-
ple quadratic equation, whowould’ve thought that the basic
numeric and natural patterns of our world, give an aesthet-
ically pleasing and beautiful ratio which creates the basis of
mankind’s artistic creations.



HKDSE Physics and M2
by Toby Lam

This article was originally published on Toby Lam’s blog, which hosts a variety of con-
tent on topics ranging frommathematics, technology, to life at Oxford and career advice.
For more, visit tobylam.xyz.

A lot of the formulae ⁷ given to you in HKDSE Physics, as7 https://www.hkeaa
.edu.hk/DocLibrar
y/HKDSE/Subject_
Information/phy/

Phy-Formulae-e.pdf

it turns out, can be derived from the calculus taught in M2.
In this series of posts we’re going to go through deriving
some of them. For a more detailed treatise on this topic, I
would highly recommend checking out the dynamics lec-
ture notes ⁸ , which is a course for 昀椀rst year mathematics at8 https://courses.ma

ths.ox.ac.uk/plugi
nfile.php/3628/mod
_resource/content/

/DynamicsLectureNot
es2022_updated.pdf

Oxford.
Wewould look at rectilinearmotion in part I, projectile/cir-

cular motion in part II and waves in part III.

Part I: Rectilinear Motion

Rectilinearmotion is one-dimensionalmotion along a straight
line. Due to it only having one dimension, all properties
about the system could be represented by one variable only.
We wouldn’t need to deal with coordinates.

Consider some point particle with constant mass <. As
we’ve seen in M2, we can respectively let displacement, ve-
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locity and acceleration be functions of time

Displacement = A(C)
Velocity = E(C) = 3A

3C

Acceleration = 0(C) = 32A
3C2 .

Under this language, we can reframe Newton’s First law as

Momentum = ?(C) = <E(C) = <
3A
3C

and Newton’s second law as

Force = �(C) = 3?
3C

= <
3E
3C

= <0.

Introducing Assumptions

To get any further, we need to introduce some assumptions
in DSE physics. In rectilinear motion we assume that

1. Force is constant (e.g. gravitational force)

This means that acceleration is constant! We would now
write 0(C) as 0 as it’s just a constant. This is crucial as it
means that

32A
3C2 = 0

3A
3C

= 0C + �1

A(C) = 1
2 0C

2 + �1C + �2

by repeated inde昀椀nite integration for some constants �1,�2.
Naturally, we ask what those constant are. We can see that

E(0) = 0 · 0+ �1 = �1

A(0) = 1
2 0 · 0+ �1 · 0+ �2 = �2
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So �1 is the velocity at C = 0. �2 is the displacement at C = 0,
which is generally taken to be 0.

Finally putting it all together we have

E(C) = 0C + E(0)
A(C) = 1

2 0C
2 + E(0)C + A(0).

Does this look familiar?

Conservation of Energy

To see why energy is conserved, we must 昀椀rst de昀椀ne the ki-
netic energy of a point particle at time C to be

)(C) = 1
2<

(
3A
3C

)2

and the potential energy for a point particle with displace-
ment A (under constant force) to be

+(A) = −<0A.

From DSE physics, we know that energy is conserved.
I.e.) ++ is kept constant. However this is rather unobvious.
Note how kinetic energy is with respect to time, but poten-
tial energy is with respect to displacement. In general, why
would something with respect to time be related to some-
thing with respect to displacement?

It turns out that for energy to be conserved, the force
needs to be conservative. In the one dimensional case, this
means that there must exist a potential energy function+(A)
such that �(A) = − 3

3A+(A). This also means that the force is
dependent on displacement only: If you are at the same dis-
placement at di昀昀erent times, the force experienced is still the
same.
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For the case of DSE physics, as the acceleration/force is
kept constant we could have +(A) = −<0A, so the force is
conservative. Note how we can add any constant to +(A)
and it would still be a valid potential function. Refer to the
dynamics lecture notes for a more general analysis on con-
servative forces.

Now how do we show conservation of energy for this
speci昀椀c case? There’s two ways of doing it. Either we ex-
pand all the terms as follows

() ++) =
[
1
2<

(
3A
3C

)2
−<0A

]

= <
[
1
2

(
0C + E(0)

)2
− 0

(
1
2 0C

2 + E(0)C + A(0)
)]

= <
[
1
2 0

2C2 + E(0)0C + 1
2E(0)

2 − 1
2 0

2C2 − 0E(0)C − 0A(0)
]

=
1
2<E(0)2 −<0A(0)

Or we can do it more abstractly by considering the deriva-
tive of ) ++

product and chain
rule

−< 32A
3C2

= −�(A)
=

3+
3A

3
3C

() ++) = 3
3C

[
1
2<

(
3A
3C

)2
++(A)

]

=
1
2< · 23

2A
3C2 · 3A

3C
+ 3+

3A
3A
3C

= <
32A
3C2 · 3A

3C
−<

32A
3C2 · 3A

3C
= 0

So ) ++ is constant.
In particular, this means that

1
2<E(C)2 −<0A(C) = 1

2<E(0)2 −<0A(0).
Does this look familiar?
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Part II: Projectile & Circular Motion

We would now look into projectile motion and uniform cir-
cular motion.

I would highly recommend checking out a video on vec-
tors ⁹ before reading the post. Having a general idea of what9 https://youtu.

be/fNk_zzaMoSs vectors are would be extremely helpful.

Motion on the 2D Plane

To studymotion on the 2Dplane, we need the idea of curves.
The trajectory of a moving particle naturally forms a curve
as time varies.

Mathematically, we model a curve as a function from R,
the real numbers, to R2, the cartesian plane. Here are some
examples below.

Straight Line. The function A(C) = (C, 0), for 0 < C < 1 de-

1 2 3
−1

1 昀椀nes the curve shown. You could imagine it as a ballmoving
1 unit on the G-axis from C = 0 to C = 1. Without doing any
mathematics, you could intuitively see that the velocity is
going to be constant and so acceleration would be 0.

Mathematically, we can take the derivative of A(C) by tak-
ing the derivative of its components. So we would have
A′(C) = (1, 0). This would be the velocity of the ball, a con-
stant, unit vector pointing towards the G-axis. The accelera-
tion, as you can guess, would be A′′(C) = (0, 0)which is the 0
vector.

Parabola. The function A(C) = (3C, 4C − 9.81
2 C2) for 0 < C < 1

1 2
−1

1
3 de昀椀nes the curve shown. You could imagine it as throwing

a ball at the origin under the e昀昀ect of gravity. Could you try
to understand this motion by considering the coordinates
separately and using the equations we developed in Part I?
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Intuitively, we know that the velocity would have the
same G-component for all time t and that the acceleration
would be a constant vector pointing downwards.

1 2
−1

1
3

C = 0.497

Mathematically, we have A′(C) = (3, 4− 9.81C) and A′′(C) =
(0,−9.81). In the 昀椀gure, the green vector is the velocity and
the blue vector is the acceleration. Both vectors’ magnitude
are scaled down by a factor of 1/3.

Circle. The function A(C) = (cos C, sin C) for 0 < C < 2� de-

1

昀椀nes the curve shown. You can imagine as a ball uniformly
rotating around the origin with radius 1.

Intuitively, we know that the velocity would be the tan-
gent vector to the circle. The magnitude would be constant
(1) as the motion is uniform. Acceleration would also be
constant and pointing towards the origin.

1

C = �/6

Mathematically, wehave A′(C) = (− sin C, cos C) and A′′(C) =
(− cos C,− sin C), which alignswith our intuition. Once again
the green vector is the velocity and the blue vector is the ac-
celeration.

As you can see the amount of behaviour we can model
with curves (the explicit construction of the A(C) function is
called curve parameterization) is highly unconstrained! It
is powerful enough to describe a far wider range of curves
than just plots of H = 5 (G) (which one can imagine as plot-
ting A(C) = (C, 5 (C)) ∀C ∈ R). There are other ways of con-
structing curves such as using level sets.

Projectile Motion

Similar to part I, the crucial assumption in DSE projectile
motion is that the only force exerted on the particle is the
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gravitational force. So once again we have

A′′(C) = (0,−6)
A′(C) = (� ·

1,−6C + �1)
A(C) = (� ·

1C + � ·
2,−1

2 6C
2 + �1C + �2)

for some constants � ·
1,� ·

2,�1,�2 by repeated “integration”.
Similar to part I we could 昀椀nd those constants in terms of
initial velocities/displacement. As such most properties of
projectile motion could be analysed by splitting into G and
H-axis.

Anotherwayof looking at it courtesy ofHenryYip ¹⁰would10 https://henry-
yip.github.io/ be to consider

A(C) = (� ·
2,�2) + (� ·

1,�1)C + (0,−6/2)C2

which tells you that for small C, A(C) looks like a straight line
starting from initial displacement (� ·

2,�2) with the direc-
tion of initial velocity (� ·

1,�1). Gradually the quadratic term
dominates and we get the parabolic shape. This idea is sim-
ilar to Taylor expansions.

Perhaps, then, the most interesting aspect about projec-
tile motion is the conservation of energy. Why is it that en-
ergy is still conserved when we use the magnitude of the
velocity vector in kinetic energy (instead of one dimensional
velocity)? How does the formalism developed in part I re-
late to the 2 dimensional case? Let’s make some de昀椀nitions
昀椀rst.

Let A(C) = (G(C), H(C)). So G(C), H(C) are the x and y compo-
nents of A(C) respectively. As suchwehave A′(C) = (G′(C), H′(C))
and A′′(C) = (G′′(C), H′′(C)). Now we have

Kinetic energy = ) =
1
2<(G′(C)2 + H′(C)2)

Potential energy = + = <6H(C)
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So we have

) ++ =
1
2<(G′(C)2 + H′(C)2) +<6H(C)

=
1
2<(� ·

1
2 + (−6C + �1)2) +<6

(
−1

2 6C
2 + �1C + �2

)

= <
[
1
2�

·
1

2 + 1
2 6

2C2 − 6C�1 + 1
2�

2
1 −

1
2 6

2C2 + 6�1C + 6�2

]

=
1
2<(� ·

1
2 + �2

1) +<6�2

which is the total energy at initial time.
A more proper way of doing this would involve multi-

variable calculus. Again refer to the dynamics lecture notes
for a more general analysis on conservative forces.

Uniform Circular Motion

Let’s think about a ball uniformly rotating around the ori-
gin. We know that two variables completely determine its
behaviour, its radius and its velocity. As suchwe can param-
eterize A(C) = (' cos(:C),' sin(:C))where ' is the radius and
: is some variable that as it turns out is related to angular
velocity.

To intuitively see why : is related to angular velocity:
Consider how A(C) = (cos(C), sin(C)), 0 < C < 2� is one full an-
ticlockwise rotation around the unit circle, but A(C) = (cos(2C),
sin(2C)), 0 < C < � is the same full anticlockwise rotation in
half the time. We doubled : and the time taken is halved.
Could you guess a relationship between : and angular ve-
locity before we do the maths?
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Let’s 昀椀nd out the velocity and the acceleration. We have

A(C) = (' cos(:C),' sin(:C))
A′(C) = (−': sin(:C),': cos(:C))
A′′(C) = (−':2 cos(:C),−':2 sin(:C))

These formulae immediately tell us all we know about uni-
form circular motion!

Firstly, A(C) ⊥ A′(C) ⊥ A′′(C) from simple coordinate ge-
ometry (or you could use the dot product if you are familiar
with linear algebra).

Secondly, the magnitude of the velocity is
√
'2:2(sin2(:C) + cos2(:C)) = ':.

So we now know E = ':.
What about angular velocity? We see that for a full an-

ticlockwise rotation to take place, C needs to go from 0 to
2�/:. The total angular change would be 2�. As such the
angular velocity is 2�:

2� = :. So : is the angular velocity!
Finally, A′′(C) = −:2A(C), so 0 = :2'!
As such we also have 0 = E2/'.

Part III: Waves

In the 昀椀nal part, we would discuss waves. How do we for-
mulate waves mathematically? Why are waves often de-
picted by sine curves?

Wave Equation

The wave equation is the (partial di昀昀erential) equation that
describes all sorts of waves (water, sound, light ...) It can be
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written compactly as

¥D = 22∇2D.

Unfortunately, to understand and derive the above would
involve heavy calculus, even if we con昀椀ne ourselves to one-
dimensional waves.

Instead, we would like to explore the mathematical for-
mulation of the sinusoidal travelling wave. The sinusoidal
travelling wave is one of many solutions to the wave equa-
tion and is the one studied extensively in DSE physics.

The one-dimensional sinusoidal travellingwave could be
represented by D(C, G) = � sin(:G − FC + #) where G is dis-
tance and C is time for some constants �, :,F,#. Try guess-
ing what physical meaning those constants have! It would
be revealed at the end.

You could imagine this as a function from R2 to R. It
takes in time and distance and tells you the displacement of
the wave.

In the graph below, we took � = F = : = 1 and # = 0.
The G-axis is red and the C-axis is green.



18

We can look at how the wave looks like at time 2 by con-
sidering the intersection of the graph D(C, G) and the plane
C = 2.

In the graph below, we took C = 0 for the red curve and
C = 2 for the green curve.

If we look at the graph along the time axis, does this look
like displacement time graphs? Can you guess what direc-
tion the wave is travelling to? How could we change the
direction of the wave? What is the wavelength? How does
the wavelength correspond to the constants?

Similarly, if we’re interested at a particular distance G =
2, we could look at the intersection of the graph D(C, G) and
the plane G = 2.

In the following graph, we took G = 0 for the red curve
and G = 2 for the green curve.
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If we look at the graph along the distance axis, does this look
like displacement distance graphs? What is the period of the
wave? How does the period correspond to the constants?

Answers and More Questions

Turns out, the wavelength � is equal to 1/: and F is the (an-
gular) frequency of the wave. Can you deduce why that is
the case?

What about #? What does it represent?
Can you think of how to parametrize stationary waves

using a similar D(G, C)?

Further Reading

For more on one-dimensional wave equations, there is a Li-
breTexts article ¹¹ which explains more.

11 https://chem.librete
xts.org/Courses/Pac
ific_Union_College/
Quantum_Chemistry/
2%3A_The_Classic
al_Wave_Equation/
.01%3A_The_One-Dimen
sional_Wave_Equation



Solving Jigsaws: Start Small, Think Big
(Theta)

by Raphael Li

Introduction

Big jigsaws

Plain-coloured puzzles perplex people, but please passion-
ate polymaths. Unfortunately, I am not one of those poly-
maths, so solving them remains a tedious task to me. Most
jigsaw puzzles have recognizable images printed on them,
so as to provide visual clues to how the pieces are to be
assembled. Monochromatic jigsaws, however, have none,
leaving the puzzled puzzler with what looks more like a
white pyramid of snow than a pile of jigsaw pieces.

A puzzle piece
with three out-

ies and one innie.

Advertised as “Pure White Hell” puzzles, these tintless
knick-knacks are similar to normal jigsaws in that they both
consist of square-shapedpieceswith innies and outies on their
edges. They must be interlocked together to form a per-
fect rectangular grid, for which there is only one correct ar-
rangement. However, the solid-coloured version is signi昀椀-
cantlymore challenging than its polychromatic counterpart,
as there is absolutely no indication as to how the pieces are

21

meant to 昀椀t together other than the shapes of the pieces them-
selves.

In this article, we will analyze how the di昀케culty of such
hellish puzzles increases with the puzzle’s proportions. But
to do that, we’ll also have to incorporate some basic knowl-
edge of big Θ.

Big�

Commonly used in asymptotics and computer science, big
Θ notation ¹² is a way to denote the complexity of a problem

12 Big Θ is pronounced
“big theta”, with
Θ being the eighth
letter of the Greek
alphabet. Although
big Θ notation is
often discussed
together with
big $ and big Ω
(“omega”) notation,
only properties
of big Θ will be
explored in this
article.

at hand ¹³. The concept of big Θ notation can be de昀椀ned as

13 For the purpose of
this article, we will
only consider aver-
age time complexity,
i.e. how the aver-
age runtime of an
algorithm increases
with the number of
inputs or the size of
the problem. “Best
case” and “worst-
case” analyses will
not be conducted.

follows.

De昀椀nition 1. Let 5 (=) be the average time taken to solve a
problem of order =, where = is a positive integer. If there
exists a function 6(=) as well as positive constants "1, "2
and =0 such that 0 6 "16(=) 6 5 (=) 6 "26(=) for all values
of = > =0, then we say that 5 (=) = Θ(6(=)).

As an example, consider an algorithm whose runtime
can be expressed as 5 (=) = 2.023=3 + 1.875= + 1.48, where
= is the number of inputs provided. When = > 1,

0 6 2.023=3 6 2.023=3 + 1.875= + 1.48
6 2.023=3 + 1.875=3 + 1.48=3

Therefore,

0 6 2.023=3 6 5 (=) 6 5.378=3 (∀= > 1)

By taking "1 = 2.023, "2 = 5.378 and =0 = 1, we can show
that 5 (=) = Θ(=3). In other words, this function has a big Θ
of =3 and its value increases with the cube of the input size.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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50

=

H

H = 2.023=3

H = 5.378=3

H = 5 (=)

Figure 1. Graphs of H = 5 (=), H = 2.023=3 and H = 5.378=3. Note how for values of = > 1 the graph
of H = 5 (=) is sandwiched between the other two graphs.

Preliminaries

Details of the Problem

Before diving deep into the calculations, let us 昀椀rst make
a couple of assumptions about the problem we are dealing
with.

For starters, to make matters neat and simple, all jigsaws
analyzed in this article will take the form of a square grid
and maintain a length-to-width ratio of 1 : 1. We will rep-
resent the side length of such a puzzle as a positive integer
= > 2. We will also denote the total number of pieces as # .
Thus, the following relationship can be established:
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# = =2 (1)

Pieces in a jigsaw puzzle can be divided into three dif-
ferent categories by shape: corner, edge and interior. We will
represent the number of corner, edge and interior pieces as
2, 4 and 8 respectively, all of which can expressed in terms
of = as follows.

2 = 4 (2)
4 = 4= − 8 (3)
8 = (= − 2)2 = =2 − 4= + 4 (4)

Notice that 2 remains constant regardless of the puzzle’s
proportions, because a square grid always has four vertices.

= pieces

= pieces

A = × = square grid
consists of 4 corner
pieces (dark grey),
(4= − 8) edge pieces
(light grey) as well
as (= − 2)2 interior
pieces (white).
Innies and outies
not shown.

From left to right:
a corner piece, an
edge piece and an
interior piece.
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Theorems Regarding Big� Notation

In this subsection, wewill introduce and prove several theo-
rems involving bigΘ notation. Sincemost of these theorems
are to be applied in the context of analyzing algorithms, the
functions involved (which usually represent runtimes of al-
gorithms) can be assumed to be positive-valued.

Theorem 1. Let � be a positive constant. If 5 (=) = Θ(6(=)),
then � · 5 (=) = Θ(6(=)).
Proof. Since 5 (=) = Θ(6(=)), we have

0 6 "16(=) 6 5 (=) 6 "26(=)
0 6 � ·"16(=) 6 � · 5 (=) 6 � ·"26(=)

for all values of = > =0, where "1, "2 and =0 are positive
constants.

Suppose "3 = � ·"1 and "4 = � ·"2. It follows that

0 6 "36(=) 6 � · 5 (=) 6 "46(=). (∀= > =0)

Therefore, � · 5 (=) = Θ(6(=)). �

Theorem 2. If 51(=) = Θ(6(=)) and 52(=) = Θ(6(=)), then
51(=) + 52(=) = Θ(6(=)).
Proof. From given,

0 6 "16(=) 6 51(=) 6 "26(=) (∀= > =0)
0 6 "36(=) 6 52(=) 6 "46(=) (∀= > =1)

where "1, "2, "3, "4, =0 and =1 are positive constants.
Without loss of generality, assume =0 6 =1.

It follows that

0 6 ("1 +"3)6(=) 6 51(=) + 52(=) 6 ("2 +"4)6(=).
(∀= > =1)

Therefore, 51(=) + 52(=) = Θ(6(=)). �
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Theorem 3. If

lim
=→∞

5 (=)
6(=) = �

where � is a nonzero 昀椀nite constant, then 5 (=) = Θ(6(=)).
Proof. By de昀椀nition of a limit towards in昀椀nity, for every & >

0, there exists a certain positive value =0 such that whenever
= > =0, the inequality ���� 5 (=)6(=) − �

���� < & (5)

holds. If we also add the restraint that & < �, then Inequal-
ity 5 can be rewritten as

0 < � − & <
5 (=)
6(=) < � + &

0 < (� − &)6(=) < 5 (=) < (� + &)6(=).
Taking "1 = � − & and "2 = � + & gives

0 < "16(=) < 5 (=) < "26(=) (∀= > =0)

which completes the proof. �

Theorem 4. If %(=) is a polynomial function of degree :, then
%(=) = Θ(=:).
Proof. Suppose%(=) = 00=: + 01=:−1 + 02=:−2 + · · · + 0:−2=2 +
0:−1= + 0: , where : is a positive integer and 00, 01, 02, · · · , 0:
are constants with 00 ≠ 0. Notice that

lim
=→∞

%(=)
=:

= lim
=→∞

(
00 + 01

=
+ 02

=2 + · · · + 0:−2

=:−2 + 0:−1

=:−1 + 0:
=:

)
= lim

=→∞(00 + 0+ 0+ · · · + 0+ 0+ 0)
= 00 ≠ 0.

By Theorem 3, %(=) = Θ(=:). �
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Note that while Theorem 3 holds, its converse does not.
For instance, consider the function 5 (=) = 2+ sin =. Since

0 6 1 · 1 6 5 (=) 6 3 · 1,

it is apparent that 5 (=) = Θ(1). However, the limit

lim
=→∞

5 (=)
1 = lim

=→∞(2+ sin =)

does not exist.

Step One: Sorting Pieces

The 昀椀rst step of our puzzle-solving procedure is sorting: the
classi昀椀cation of puzzle pieces into corner pieces, edge pieces
and interior pieces. This will make the assembly more orga-
nized, systematic and e昀케cient later.

Imagine a conveyor belt carrying all the puzzle pieces in
a linear fashion, and the puzzler starts “identifying” them
one at a time, from left to right. Suppose it takes one sec-
ond to identify if a certain puzzle piece is a corner, edge or
interior one. Since there are a total of # pieces, it may be
tempting to jump to the conclusion that sorting all of them
will take exactly # seconds, going through and examining
every single piece in the pile.

I E E E E I I E C E C I I E I

E C I I E C I E E E

A sequence of cor-
ner (C), edge (E) and

interior (I) puzzle
pieces, arranged in a
random order. How

long will the sort-
ing process take?

Fortunately, there is a relatively quicker method. Recall
that the number of each type of puzzle pieces is known:
there are 4 corner pieces, (14= − 8) edge pieces and (12=2 −
14= + 4) interior pieces. This means that if at some point in
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the sorting process we’ve already picked out the entirety of
edge and corner pieces, we can be certain that the rest must
all be interior pieces — no further identi昀椀cation required.

If so, what is the expected time needed to sort out all #
pieces? It’s de昀椀nitely shorter than # seconds, sure, but by
how much?

A Concrete Example

For starters, let us consider the following scenario:

E I E C E I E C C E E I E E E

E C E E I I I I I I

Another random
sequence of 25
jigsaw pieces (4
corner pieces, 12
edge pieces and
9 interior pieces).
Note the six shaded
consecutive interior
pieces at the end.

As we can see, the sequence ends in a consecutive run of six
interior pieces. What thismeans is that ifwe start sorting the
pieces from left to right, by the time we 昀椀nish dealing with
the 19th piece (marked with an arrow in the 昀椀gure above),
it will no longer be necessary for us to check any of the re-
maining pieces—we’ve already successfully identi昀椀ed four
corner pieces and twelve edge pieces, so the rest must be in-
terior.

If we denote the length of the consecutive run at the end
as !8 , the duration of the sorting process )B (in seconds) can
be expressed as:

)B = # − !8 (6)
= 25− 6
= 19

which is clearly less than 25 seconds.
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Calculating the Expected Duration

We start by taking note of the fact that

%(Sequence ends in a run of corner pieces) = 2
#

%(Sequence ends in a run of edge pieces) = 4
#

%(Sequence ends in a run of interior pieces) = 8
#

because whether each of these events happen is completely
dependent on what the very last piece of the sequence is: if
the sequence ends in an interior piece, then it must end in a
run of interior pieces (whose length is at least 1), and so on.

Meanwhile, the expected length of that run varies de-
pending on the type of puzzle piece involved. For instance,
since the sequence comprises of 8 interior pieces and (2 + 4)
non-interior pieces, the 8 interior pieces must go into (2 +
4 + 1) di昀昀erent consecutive runs of interior pieces (although
somemayhave a length of 0). Therefore, the expected length
of such a run can be expressed as

�(!8) = 8
2 + 4 + 1

Similarly, the expected length of a consecutive run of edge
pieces �(!4) and that of corner pieces �(!2) are expressed as:

�(!4) = 4
8 + 2 + 1

�(!2) = 2
8 + 4 + 1

Lastly, by generalizing Equation 6, the expected period
of time �()B) needed to complete the sorting process can be
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calculated as follows:

�()B) = # − �(Length of 昀椀nal consecutive run)

= # −
(
2
#

· �(!2) + 4
#

· �(!4) + 8
#

· �(!8)
)

= # −
(
2
#

· 2
8 + 4 + 1 + 4

#
· 4
8 + 2 + 1 + 8

#
· 8
2 + 4 + 1

)

= # −
(

22

#(8 + 4 + 1) +
42

#(8 + 2 + 1) +
82

#(2 + 4 + 1)
)

= # − 1
#

(
22

8 + 4 + 1 + 42

8 + 2 + 1 + 82

2 + 4 + 1

)

= # − 1
#

(
22

# − 2 + 1 + 42

# − 4 + 1 + 82

# − 8 + 1

)

By substituting Equations 1 through 4, we have

�()B)

= =2 − 1
=2

(
42

=2 − 4+ 1
+ (4= − 8)2

=2 − (4= − 8) + 1
+ (= − 2)4

=2 − (=2 − 4= + 4) + 1

)

= =2 − 1
=2

(
16

=2 − 3
+ 16(= − 2)2

=2 − 4= + 9
+ (= − 2)4

4= − 3

)
(7)

After a fair amount of computation, this expression comes
out as follows.

�()B) =
4(= − 2)(=2 + 1

) (
=6 − 3=5 + 5=4 + 7=3 − 8=2 + 42= − 36

)
=2(4= − 3)(=2 − 3)(=2 − 4= + 9)

(8)

Applying Big�

To 昀椀nd the big Θ of the nightmare-inducing algebraic frac-
tion obtained in Equation 8, notice that the numerator and
denominator have degrees 9 and 7 respectively. Intuitively,
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we would expect the function to have a similar growth rate
to that of a quadratic function.

To prove this, we will consider the following limit.

lim
=→∞

�()B)
=2 = lim

=→∞

4(= − 2)(=2 + 1
) (
=6 − 3=5 + 5=4

+7=3 − 8=2 + 42= − 36
)

=4(4= − 3)(=2 − 3)(=2 − 4= + 9)

= lim
=→∞

4(1− 2/=)(1+ 1/=2) (1− 3/= + 5/=2

+7/=3 − 8/=4 + 42/=5 − 36/=6)
(4− 3/=)(1− 3/=2)(1− 4/= + 9/=2)

= lim
=→∞

4(1− 0)(1+ 0)(1+ 0)
(4− 0)(1− 0)(1+ 0)

= 1 (9)

Alternatively, the same limit can also be evaluated using
the representation of �()B) in Equation 7.

lim
=→∞

�()B)
=2 = lim

=→∞
1
=2

(
=2 − 1

=2

(
16

=2 − 3
+ 16(= − 2)2

=2 − 4= + 9
+ (= − 2)4

4= − 3

))

= lim
=→∞

(
1− 1

=4

(
16

=2 − 3
+ 16(= − 2)2

=2 − 4= + 9
+ (= − 2)4

4= − 3

))

= lim
=→∞

(
1− 16

=6 − 3=4 − 16(= − 2)2
=6 − 4=5 + 9=4 − (= − 2)4

4=5 − 3=4

)

= lim
=→∞

(
1− 16=−6

1− 3=−2 − 16
(
1− 2=−1)2=−4

1− 4=−1 + 9=−2

−
(
1− 2=−1)4=−1

4− 3=−1

)

= lim
=→∞

(
1− 16=−6

1− 3=−2 − 16
(
1− 2=−1)2=−4

1− 4=−1 + 9=−2

−
(
1− 2=−1)4=−1

4− 3=−1

)
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= lim
=→∞

(
1− 0

1− 0 − 0
1− 0+ 0 − 0

4− 0

)

= 1

As shown in both calculations, when = approaches in昀椀n-
ity, �()B)/=2 gets closer and closer to a 昀椀nite nonzero con-
stant: 1. By Theorem 3, the rational function �()B) has a big
Θ of =2.

Step Two: Constructing a Frame

After sorting our pieces by shape, the next step is to con-
struct a square frame by connecting all the edge and corner
pieces. Again, we’ll assume that it takes us exactly one sec-
ond to determine whether a speci昀椀c puzzle piece 昀椀ts and
can be inserted in a certain position.

= pieces

= pieces

The frame of an
= × = square grid,
consisting of only
edge and corner
pieces.
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The First Connection

We start with a randomly selected corner piece. There are
two target edge pieces that can be connected to this corner
piece validly, and successfully picking any one of those two
will take, on average, (4 + 1)/3 seconds. This is because in a
randomly arranged sequence of 4 edge pieces, the expected
length of each consecutive run of non-target pieces is (4 −
2)/3.

E E E E E E E E E E E E

≈ (4 − 2)/3

A random sequence
of 12 edge pieces,
two of which are
considered the

“target” (shaded).

Therefore, the 昀椀rst target piece will be found at position

4 − 2
3 + 1 =

4 + 1
3 .

The Rest of the First Edge

Out of the remaining (4 −1) edge pieces, only one can be suc-
cessfully linked to the piece we’ve just attached. Searching
for this one piece takes about (4 − 1)/2 seconds on average.

As the pool of candidates narrowsdown, the timeneeded
to locate each of the pieces in the rest of the edge will take
less and less time.

Time needed for the 2nd edge piece = (4 − 1)/2
Time needed for the 3rd edge piece = (4 − 2)/2

...
Time needed for the (4/4)th edge piece = (4 − (4/4− 1))/2
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To top it all o昀昀, we will 昀椀nish the edge by attaching the
second corner piece, looking for which will take an average
of 2 seconds.

Taking all into account, 昀椀nishing the 昀椀rst edge of the puz-
zle will require a total of:

4 + 1
3 +

(
4/4−1∑
:=1

1
2 (4 − :)

)
+ 2

=
4 + 1

3 + 1
2

(
4/4−1∑
:=1

4 −
4/4−1∑
:=1

:

)
+ 2

=
4 + 1

3 + 1
2

(
4
( 4
4 − 1

)
− 1

2 · 44 ·
( 4
4 − 1

))
+ 2

=
4 + 1

3 + 4
2 ·

( 4
4 − 1

) (
1− 1

2 · 1
4

)
+ 2

=
4 + 1

3 + 74
16 ·

( 4
4 − 1

)
+ 2

=
4 + 1

3 + 742

64 − 74
16 + 2

=
2142 − 204 + 448

192 seconds.
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Constructing the Adjacent Edges

After constructing the 昀椀rst edge of the puzzle, we’ll now
proceed to the two edges perpendicular to the existing one.

= pieces

= pieces

Building the sec-
ond and third

edge of the puzzle.

As only 34/4 edge pieces remain, the amount of time re-
quired to build the second edge should be relatively shorter.
Speci昀椀cally, this process will take

(
4/4−1∑
:=0

1
2

(
34
4 − :

))
+ 1

2 + 1

=
1
2

(
4/4−1∑
:=0

34
4 −

4/4−1∑
:=0

:

)
+ 1

2 + 1

=
1
2

(
342

16 − 1
2 · 44 ·

( 4
4 − 1

))
+ 3

2

=
1
2

(
342

16 − 42

32 + 4
8

)
+ 3

2

=
542 + 44 + 96

64 seconds.
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The same goes to the third edge — the only di昀昀erence
will be the number of remaining pieces. By modifying the
above calculation, the time needed to construct this third
edge can be represented as

(
4/4−1∑
:=0

1
2

( 4
2 − :

))
+ 1

=
1
2

(
4/4−1∑
:=0

4
2 −

4/4−1∑
:=0

:

)
+ 1

=
1
2

(
42

8 − 1
2 · 44 ·

( 4
4 − 1

))
+ 1

=
1
2

(
42

8 − 42

32 + 4
8

)
+ 1

=
342 + 44 + 64

64 seconds.
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The Last Edge

At this point, only 4/4 edge pieces remain, all of which will
go into the fourth (and last) edge of the puzzle’s frame.

= pieces

= pieces

Building the fourth
edge of the puzzle.

As expected, the calculation here is akin to those in the
previous subsection; completing the last part of the frame
will take, on average,

4/4−1∑
:=0

1
2

( 4
4 − :

)

=
1
2

(
4/4−1∑
:=0

4
4 −

4/4−1∑
:=0

:

)

=
1
2

(
42

16 − 1
2 · 44 ·

( 4
4 − 1

))

=
1
2

(
42

16 − 42

32 + 4
8

)

=
42 + 44

64 seconds.
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Summing It All Up

In total, the expected duration �()5 ) needed to construct the
entire frame of the puzzle can be represented in terms of 4
as

�()5 ) = 2142 − 204 + 448
192 + 542 + 44 + 96

64

+ 342 + 44 + 64
64 + 42 + 44

64

=
342 + 4 + 58

12

Using Equation 3, the same value can be expressed in
terms of = as

�()5 ) = 3(4= − 8)2 + (4= − 8) + 58
12

=
48=2 − 188= + 242

12

=
24=2 − 94= + 121

6 (10)

Applying big�

As �()5 ) = (24=2 − 94= + 121)/6 is a polynomial function of
degree 2, we can make use of Theorem 4 and conclude that
�()5 ) has a bigΘ of =2, which is identical to that of �()B), the
expression we obtained in the section about sorting. How-
ever, just because both runtimes have the same big Θ does
not imply that the sorting and frame-buildingprocesses take
the same amount of time.

To illustrate this, consider the functions 51(=) = 0.314=3 +
1/= and 52(=) = 0.628=3 − 0.628=2 + =. By Theorems 3 and
4 respectively, both functions have a big Θ of =3, which in-
dicates that both of the functions go up with the cube of =.
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Indeed, if we plot the two functions on separate coordinate
systems and look at the big picture, we can see that although
the graph of 51(=) contains a vertical asymptote of G = 0,
both graphs have a roughly similar shape. This is character-
istic of functions with the same big Θ.

0 2 4 6

20

40

60

=

H

H = 51(=)

0 2 4 6
0

20

40

60

80

100

=

H

H = 52(=)

Graphs of H = 51(=) and H = 52(=) on separate coordinate systems. Note the di昀昀erent scales used
for the H-axes.

Despite this, plotting both functions on the same plane
reveals that 51(=) and 52(=) are entirely di昀昀erent functions. If
51(=) and 52(=) represent the runtimes of two di昀昀erent algo-
rithms, the one with runtime 51(=)may be considered more
e昀케cient, especially for larger values of =.
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0 1 2 3 4 5 6
0

20

40

60

80

100

=

H

H = 51(=)
H = 52(=)

Graphs of H = 51(=) and H = 52(=) on the same coordinate plane.

An evenmore obvious example of this can be seen in Fig-
ure 1. Despite the similar shape of the three cubic graphs,
there is a clear di昀昀erence as to the actualmagnitudes of func-
tion outputs.

Step Three: Filling Up the Interior

To complete what’s left of the puzzle, all we have to do is to
assemble the interior pieces. As shown in Equation 4, there
are 8 = (= − 2)2 such pieces.

To do this, we will work from left to right and from top
to bottom, employing as always the strategy of randomly se-
lecting an unused piece and trying to attach it to the puzzle.
If such an operation takes one second, the expected amount
of time necessary to complete the hollow and interior part
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of the puzzle, denoted as �()8), can be calculated as follows.

�()8) = 8 + 1
2 + 8

2 + 8 − 1
2 + 8 − 2

2 + · · · + 1

=
8−1∑
:=0

8 − : + 1
2

=
1
2

(
8−1∑
:=0

(8 + 1) −
8−1∑
:=0

:

)

=
1
2

(
8(8 + 1) − 8(8 − 1)

2

)

=
82 + 38

4
Substituting in Equation 4 gives the expected time in terms
of =:

�()8) = (= − 2)4 + 3(= − 2)2
4 (11)

which is a polynomial of degree 4 and thus has a big Θ of
=4.

Linking the Three Steps Together

In the last three sections, we determined the amount of time
needed to successfully sort and assemble all =2 pieces in an
= × = jigsaw puzzle. All that’s left to do is to add them up
to obtain the expected time required �()?) to complete the
entire jigsaw from start to 昀椀nish.

�()B) =
4(= − 2)(=2 + 1

) (
=6 − 3=5 + 5=4 + 7=3 − 8=2 + 42= − 36

)
=2(4= − 3)(=2 − 3)(=2 − 4= + 9)

�()5 ) = 24=2 − 94= + 121
6

�()8) = (= − 2)4 + 3(= − 2)2
4
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Sorting
Frame construction
Assembly of interior pieces

Expected duration of di昀昀erent parts of the puzzle-solving procedure. Parts of the graphs where
= < 3 are not plotted.

By summing together Equations 7, 8 and 9, we have

�()?) =
4(= − 2)(=2 + 1

) (
=6 − 3=5 + 5=4 + 7=3 − 8=2 + 42= − 36

)
=2(4= − 3)(=2 − 3)(=2 − 4= + 9)

+ 24=2 − 94= + 121
6 + (= − 2)4 + 3(= − 2)2

4

=

(
12=11 − 153=10 + 1056=9 − 4115=8 + 9148=7 − 7109=6

−16752=5 + 54963=4 − 63480=3 + 26814=2 − 5760= + 3456
)

12=2(4= − 3)(=2 − 3)(=2 − 4= + 9) .

Instead, recall the following conclusions drawn in Sec-
tions , and respectively.

�()B) = Θ(=2)
�()5 ) = Θ(=2)
�()8) = Θ(=4)
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Since �()8) has the greatest big Θ out of all three, it has the
highest growth rate and is thus likely to outgrow �()B) and
�()5 ) as = gets larger and larger. Therefore, if we were to
guess, the function �()?)would probably have a bigΘ of =4.
This hypothesis is also supported by the fact that the graph
for �()?) bears a resemblance to that of a quartic function.

10 20 30 40 50 60 70 80 90 100
0

1

2

·107

Side length of puzzle =

Ex
pe

ct
ed

tim
e
(s
ec

on
ds

)

Expected duration of solving a jigsaw puzzle. Parts of the graphs where = < 3 are not plotted.

Again, we will use Theorem 4 in order to prove this hypoth-
esis.

lim
=→∞

�()?)
=4

= lim
=→∞

�()B)
=4 + lim

=→∞
�()5 )
=4 + lim

=→∞
�()8)
=4

= lim
=→∞

(
�()B)
=2 · 1

=2

)
+ lim

=→∞
�()5 )
=4 + lim

=→∞
�()8)
=4

= lim
=→∞

(
1 · 1

=2

)
+ lim

=→∞
�()5 )
=4 + lim

=→∞
�()8)
=4 (by Equation 9)
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= lim
=→∞

�()5 )
=4 + lim

=→∞
�()8)
=4

= lim
=→∞

24=2 − 94= + 121
6=4 + lim

=→∞
(= − 2)4 + 3(= − 2)2

4=4

= lim
=→∞

24=−2 − 94=−3 + 121=−4

6

+ lim
=→∞

(1− 2=−1)4 + 3(1− 2=−1)2=−2

4

= 0+ lim
=→∞

(1+ 0)4 + 0
4 = lim

=→∞
14

4 =
1
4

As we can see, the limit lim=→∞ �()?)/=4 evaluates to
1/4, a nonzero and 昀椀nite constant. Hence, �()?) = Θ(=4).

Conclusion

As we have shown, the amount of time required to solve
a solid-coloured jigsaw puzzle of proportions = × = can be
estimated using the following formula, in which = > 3.

�()?) =

(
12=11 − 153=10 + 1056=9 − 4115=8 + 9148=7 − 7109=6

−16752=5 + 54963=4 − 63480=3 + 26814=2 − 5760= + 3456
)

12=2(4= − 3)(=2 − 3)(=2 − 4= + 9) .

A table overleaf shows several results derived from this for-
mula.
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Side length Average time needed to solve

3 18.6 seconds
10 23.9 minutes, about twice as long as the 昀椀rst spacewalk
20 7.83 hours, roughly half the duration of the 昀椀rst transatlantic 昀氀ight
50 15.5 days, about 3.5 times as long as the voyage of the Titanic
100 267 days, approximately the length of a full-term pregnancy
200 12.2 years, about the orbital period of Jupiter
500 487 years, about twice the orbital period of Pluto
1000 7.86 millenia, about 1500 times the duration of World War II

The average amount of time needed to solve square-shaped puzzles of various sizes. Results are
rounded.

Wehave also shown that the puzzle-solving procedure has a
bigΘ of =4. What this means is that while doubling the side
length of a jigsaw puzzle quadruples its area, its di昀케culty
(as re昀氀ected by the average time needed to solve it) increases
16-fold, since 16 = 24. In general, an increase in side length
by : times will increase the di昀케culty by a factor of :4.

It is important to note that this may not accurately re-
昀氀ect the actual, real-life situation. In reality, it may be more
practical to further sort the interior pieces into six di昀昀erent
groups based on the positions of their innies and outies, as
shown in the 昀椀gure below. In addition to their positions,
inspecting the shapes of the innies and outies in detail may
also help speed up the process.

From left to right: Examples of jigsaw pieces with 4 outies, 3 outies, 2 adjacent outies, 2 opposite
outies, 1 outie and no outies.

Feynman’s Intergral Trick
by Anthony Lai

Introduction

Feynman’s Trick is a powerful integration technique used to

Richard Phillips
Feynman

compute De昀椀nite Integrals. Initially popularized by Ameri-
can theoretical physicist Richard Feynman (1918-1988), (hence
its common name as Feynman’s Trick). It twists the basis of
the problem by converting the problem from an integral to
a di昀昀erential equation.

Other names for Feynman’s Trick include its proper name:
The Leibniz Integral Rule, and a more descriptive name of
the technique: Di昀昀erentiation under the Integral Sign.

Basic Idea

The basis of Feynman’s Trick is to introduce a new variable
into a De昀椀nite Integral, di昀昀erentiating the integral with re-
spect to the new variable, and in the process, simplifying
the integral and converting the problem into a di昀昀erential
equation.

For an integral of an arbitrary function 5 (G), the integral
may be transformed by considering a new variable C as fol-
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lows: ∫
5 (G) 3G −→ Let 6(C) =

∫
5 (G, C) 3G.

The next step involves di昀昀erentiating the new function 6(C)
with respect to the new variable C

6′(C) =
∫

%

%C
[ 5 (G, C)] 3G.

The simpli昀椀ed on the right-hand side should then be sim-
pli昀椀ed into a function of C, the problem is now a di昀昀erential
equation and can be solved by integrating both sides with
respect to C.

Working Example

Suppose you were told to compute the following integral:

∫ 1

0

G3 − 1
ln G

3G.

Usual integration techniques taught in school such as In-
tegration by Substitution, Trigonometric substitutions, and
Integration by Parts do not successfully compute a result
for this problem. This is where Feynman’s Trick comes in
handy.

We start by introducing a new variable C into the integral,
which involves replacing a parameter in the integral with C
and then considering the entire integral to be a function of
C.

Let 5 (C) =
∫ 1

0

GC − 1
ln G

3G.

The next step is to di昀昀erentiate both sides of the integral
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with respect to C.

3
3C

5 (C) =
∫ 1

0

3
3C

(
GC − 1
ln G

)
3G

5 ′(C) =
∫ 1

0

GC ln G
ln G

3G =
∫ 1

0
GC 3G =

GC+1

C + 1

����
1

0
=

1
C + 1 .

Now we have simpli昀椀ed the integral and obtained a result

It should be noted
that G and by
extension 3G should
be considered as
constants since we
are di昀昀erentiating
with respect to C.

which is essentially a di昀昀erential equation. We can then in-
tegrate both sides of this di昀昀erential equation with respect
to C. ∫

5 ′(C) 3C =
∫

1
C + 1 3C

5 (C) = ln|C + 1| + �

=⇒
∫ 1

0

GC − 1
ln G

3G = ln|C + 1| + �

We can now write the function 5 (C) as a regular expression
in terms of C, though the integration constant � remains a
problem as it is arbitrary. We can eliminate this constant by
setting C to a convenient value, e.g. 0 and solving for �:

Let C = 0: ∫ 1

0

G0 − 1
ln G

3G = ln|0+ 1| + �

∫ 1

0

0
ln G

3G = ln|1| + �

0 = 0+ �

=⇒ � = 0

=⇒ 5 (C) =
∫ 1

0

GC − 1
ln G

3G = ln|C + 1|

Finally, we can solve the original problem by substituting
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C = 3:

5 (3) =
∫ 1

0

G3 − 1
ln G

3G = ln|3+ 1| = ln 4 .

This is how Feynman’s Trick can be applied to compute Def-
inite Integrals.

Conclusion and Challenge for Readers

Feynman’s Trick is quite a di昀昀erent approach to comput-
ing integrals compared to the standard methods taught in
school. Back in Feynman’s day, Feynman apparently built
himself a reputation of being a “master” at computing inte-
grals using this trick. Feynman himself described this trick
in his autobiography Surely you’re joking, Mr. Feynman, as
part of a “di昀昀erent box of tools” which can be used to tackle
integration problems.

To end o昀昀 our exploration of Mr. Feynman’s neat little
trick, I challenge you, dear reader, to compute the following
integral: ∫ 1

0

ln(1+ G − G2)
G

3G.
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